Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires

Identifieur interne : 000448 ( Chine/Analysis ); précédent : 000447; suivant : 000449

Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires

Auteurs : RBID : Pascal:12-0100057

Descripteurs français

English descriptors

Abstract

Rational synthesis of nanowires via the vapor- liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0100057

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires</title>
<author>
<name>JING GAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lebedev, Oleg I" uniqKey="Lebedev O">Oleg I. Lebedev</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Turner, Stuart" uniqKey="Turner S">Stuart Turner</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>EMAT, University of Antwerp, Groenenborgerlaan 171</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>2020 Antwerpen</wicri:noRegion>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name>YONG FENG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637371</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUN HAO LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, National University of Singapore, 2 Science Drive 3</s1>
<s2>Singapore, 117542</s2>
<s3>SGP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore, 117542</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUAN PING FENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, National University of Singapore, 2 Science Drive 3</s1>
<s2>Singapore, 117542</s2>
<s3>SGP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore, 117542</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou, 310027</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou, 310027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boullay, Philippe" uniqKey="Boullay P">Philippe Boullay</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Prellier, Wilfrid" uniqKey="Prellier W">Wilfrid Prellier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
<settlement type="city">Caen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Tendeloo, Gustaaf" uniqKey="Van Tendeloo G">Gustaaf Van Tendeloo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>EMAT, University of Antwerp, Groenenborgerlaan 171</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>2020 Antwerpen</wicri:noRegion>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Tom" uniqKey="Wu T">Tom Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637371</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0100057</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0100057 INIST</idno>
<idno type="RBID">Pascal:12-0100057</idno>
<idno type="wicri:Area/Main/Corpus">002160</idno>
<idno type="wicri:Area/Main/Repository">001715</idno>
<idno type="wicri:Area/Chine/Extraction">000448</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bixbyite</term>
<term>Catalysts</term>
<term>Copper alloys</term>
<term>Crystal growth from vapors</term>
<term>Crystal seeds</term>
<term>Cubic lattices</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Gold alloys</term>
<term>Heterojunctions</term>
<term>Indium additions</term>
<term>Indium oxide</term>
<term>Interfaces</term>
<term>Nanoelectronics</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Phase diagrams</term>
<term>Tin additions</term>
<term>Tin oxide</term>
<term>VLS growth</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hétérojonction</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Méthode VLS</term>
<term>Nanoélectronique</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Germe cristallin</term>
<term>Croissance cristalline en phase vapeur</term>
<term>Catalyseur</term>
<term>Diagramme phase</term>
<term>Réseau cubique</term>
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Or alliage</term>
<term>Cuivre alliage</term>
<term>Interface</term>
<term>Addition étain</term>
<term>Addition indium</term>
<term>8107V</term>
<term>8107B</term>
<term>8535</term>
<term>8116H</term>
<term>Bixbyite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rational synthesis of nanowires via the vapor- liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JING GAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEBEDEV (Oleg I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TURNER (Stuart)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YONG FENG LI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YUN HAO LU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YUAN PING FENG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BOULLAY (Philippe)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>PRELLIER (Wilfrid)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>VAN TENDELOO (Gustaaf)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>WU (Tom)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire CRISMAT, ENSICAEN, CNRS UMR 6508, 6 Boulevard du Maréchal Juin</s1>
<s2>14050 Caen</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>EMAT, University of Antwerp, Groenenborgerlaan 171</s1>
<s2>2020 Antwerpen</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, National University of Singapore, 2 Science Drive 3</s1>
<s2>Singapore, 117542</s2>
<s3>SGP</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University</s1>
<s2>Hangzhou, 310027</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>275-280</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000506742750480</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>50 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0100057</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Rational synthesis of nanowires via the vapor- liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode VLS</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>VLS growth</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método VLS</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Germe cristallin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Crystal seeds</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Croissance cristalline en phase vapeur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal growth from vapors</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diagramme phase</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Phase diagrams</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Or alliage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gold alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cuivre alliage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper alloys</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Interface</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Bixbyite</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Bixbyite</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="3" l="SPA">
<s0>Bixbyita</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0100057
   |texte=   Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024